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Diffusion equation for semiclassical bosons and fermions 
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Received 31 July 1978, in final form 4 October 1978 

Abstract. We derive the equation of evolution in the configuration space for a system of 
semiclassical bosons or fermions starting from the recently derived nonlinear Kramers- 
Chandrasekhar equation for such particles. The latter equation does not contract to the 
corresponding Fokker-Planck equation in the velocity space; however, we show that in the 
context of a Chapman-Enskog approximation the contraction to the physical space leads to 
the diffusion equation with the classical relationship between the self-diffusion coefficient 
and the friction coefficient maintained. 

1. Introduction 

The classical Kramers-Chandrasekhar (KC) equation (Chandrasekhar 1943, equation 
(249)) provides a description of Brownian particle motion in the full p space. Contrac- 
ted descriptions, in either the momentum or configuration space, are also of interest and 
are frequently all that are required for dealing with a given situation, e.g. spatial 
homogeneity or relaxation on the macroscopic time scale. In the former case the 
Fokker-Planck (FP) equation can be obtained easily by direct integration over the 
spatial variable, but in the latter case some care is necessary if a closed equation for the 
density is to be obtained. A variety of approximate techniques have been employed in 
reducing the KC equation to the diffusion equation, but in our opinion the Chapman- 
Enskog method (Resibois 1965) is the most direct of these. 

The situation described above becomes less clear when the Brownian particles obey 
the exclusion principle, i.e. are bosons or fermions. A semiclassical theory of such 
systems has recently been developed by Balazs (1978), who has obtained both the KC 
and FP equations. As might be expected, the collision terms in both of these equations 
are nonlinear, reflecting the effects of the exclusion principle, and in this respect these 
equations are similar to the semiclassical generalisation of the Boltzmann equation 
obtained some time ago by Uehling and Uhlenbeck (1933). As a result of this 
nonlinearity, the KC equation does not contract into the FP equation after integration 
over the spatial coordinate, which indicates that the contraction to a diffusion equation 
may encounter similar problems. This uncertainty has a further basis in that the 
streaming term in the generalised KC equation is also nonlinear, and this term plays an 
important role in the reduction to the diffusion equation. As we shall see, however, it is 
just this nonlinear form which is required to obtain the diffusion equation. Our specific 
purpose here will be to show that, in the context of a Chapman-Enskog-like theory, the 
generalised KC equation does reduce to the diffusion equation with a diffusion 
coefficient which depends on the friction coefficient in the usual (classical) manner. 
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2. Chapman-Enskog approximation 

The generalised KC equation derived by Balazs (1978) is 

= lszf (1) 

where, in the semiclassical description, f = f ( 4 , p ,  t ) ,  a = h 3 / p  for fermions with p the 
Brownian particle statistical weight, b is the friction coefficient, and the particle mass 
has been set equal to unity. For bosons the sign of a is negative. 

The Chapman-Enskog solution (Resibois 1965) is found by expanding f in a 
parameter E of the same order of smallness as the spatial gradients in the system. Thus, 
each a/aq on the LHS of equation (1) is considered to O ( E ) .  Further, the time 
dependence of f on the macroscopic time scale is assumed to be through n(4 ,  t )  = 
5 d p f ( q ,  p ,  t )  so that df/dt --* (6f/6n)(an/at)  on this time scale. Then a f / a t  (as well as 
af/d4) will be at least of O ( E )  since an/at contains spatial gradients. Writingf = Ec eif‘j’, 
with the constraint n = j dpf”,  and substituting this into equation (1) we obtain the 
following equations by equating terms of order E’ and E ’ :  

afO) = 0 (2) 

where ~ “ ’ f ”  denotes the entire O ( E )  contribution of af. In equation (3) the first term 
on the LHS has been obtained by integrating equation (1) over p to obtain 

and noting that, since the gradient introduces an O ( E ) , ~  can be replaced by f“) in 
writing af/ar to O ( E ) .  

The solution to equation (2) is 

f‘O’= (a  + A  exp(p2 /2k~) ) - ’  ( 5 )  

where A is related to n(4,  t )  as follows from normalisation. Expanding the RHS of 
equation (4) we see that to lowest (non-vanishing) order 

an a 
at a4 
_ -  - - - * I dp pcfl’( 1 - uf“’) i f o ) (  1 - af(l))] 

The RHS of equation (6) can be replaced by an integral depending on the known 
quantity f”’ only; this follows from operating on equation (3) by j dp p which allows us 
to write 

The integra! on the RHS of equation (7) can be related to n(4,  t )  by an integration by 
parts. This is perhaps most easily seen by changing the varaible of integration in the 
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intermediate steps to x = p2/2kT. As a result we can write equation (7) in the canonical 
form 

with the classical relationship for the self-diffusion coefficient D = kT/[.  Although the 
Einstein relationship D = kT/[ still holds, the friction coefficient itself will differ from 
its classical value. The evaluation of this quantity is a separate problem and, though of 
interest, will not be considered at this time. 

The Chapman-Enskog procedure can also be followed in the case where an external 
field, K ( q ) ,  is present provided that the field curvature is such that the characteristic 
distances for the potential and density spatial gradients are the same. The generalized 
KC equation in this case will include an additional term K .  ( a / d p ) f ( l -  a f )  on the left 
side (Balazs 1978). Applying the C+apman-Enskog procedure, the equation for f'"' 
remains unchanged, so that this quantity is again given by equation ( 5 ) .  The equation 
for f"' now includes an additional term K . ( a / a p ) f " ' ( l  - af'") on the left side. With 
these changes in the basic equations the same procedure as followed above leads to the 
Smoluchowski equation 

3. Concluding remarks 

It is significant to note that the above results are dependent on the altered form of the 
streaming term appearing in the generalised KC equation; with the usual form of the 
streaming term, as appears in the Uehling-Uhlenbeck equation (Uehling and Uhlen- 
beck 1933) the diffusion and Smoluchowski equations will not be recovered. This 
demonstration is the main object of this paper. 

Finally, we might note one further interesting consequence of the particle statistics. 
In the classical case, a = 0, equation (1) can be used to calculate the momentum 
autocorrelation function directly, but for a f 0 this no longer appears to be the case. 
However, since the autocorrelation function can also be calculated from the diffusion 
equation, our results indicate that the classical exponential behaviour implied by that 
equation still holds. 
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